Despite the huge burden of congenital malformations (CM), there are not enough studies characterizing the development of congenital malformations of the fetus in women with a burdened obstetric history. The aim is to identify and study the factors associated with fetal CM among women with a history of intrauterine malformation. Material and methods. The study included 665 women who had children with congenital malformations. Variables were considered: age, region, childbirth, number of pregnancies, number of abortions, miscarriages, fetal malformations, antenatal fetal death, methylenetetrahydrofolate reductase (MHTR) levels, alpha-fetoprotein (AFP), human chorionic gonadotropin (hCG), unconjugated NE) and the frequency of HLA-II class antigens. Results. A history of intrauterine malformation was observed in 450 (67.7%) patients. According to the OR value, the high risk of fetal CM is associated with the early gestational period (OR = 191.02, 95% CI: 11.82-3085.9, p <0.05), the presence of various variants of HLA alleles (OR = 11.69, 95% CI: 2.73-50.01, p <0.05), DQA1 allele (OR = 6.78, 95% CI: 2.72-16.92, p <0.05), preterm birth factor (OR = 4.04, 95% CI: 2.69-5.07, p <0.05). The ROC curve of pregnancy and intrauterine malformation was 0.613 and 1.000, respectively. There is a statistically significant relationship between the formation of CM and variables: childbirth, gestational period, intrauterine malformation, recurrent miscarriage, antenatal mortality, antenatal mortality factor, MHTR polymorphism, HLA alleles.
Conclusion. Based on the study, the probable determinants influencing the development of CM were identified. The created logistic model had a high sensitivity and specificity, which makes it possible to offer it for use in clinical practice.
Moorthie, S., Blencowe, H., Darlison, M.W., Lawn J., Mastroiacovo P., Morris J.K., Modell B., Congenital Disorders Expert Group. An overview of concepts and approaches used in estimating the burden of congenital disorders globally. J Community Genet. 2018;9:347–362 DOI 10. 1007/s 12687-017-0335-3
Moorthie, S., Blencowe, H., Darlison, M.W., Lawn J., Morris J.K., Modell B. et al. Estimating the birth prevalence and pregnancy outcomes of congenital malformations worldwide. J Community Genet. 2018;9:387–396. https://doi.org/10.1007/s12687-018-0384-2
ВОЗ. Информационный бюллетень. Февраль 2019. Здоровье детей. Выпуск 97, №2, с.73-168. Электронный научный журнал, 2019. 65 (1).
Ибрагимов М.С. Частота встречаемости аномалий развития у новорожденных в Нахи-чеванской Автономной Республике Азербайджана. Фундаментальные исследования. 2010; 3:44-47.
Мамед-заде Г.Т. Врожденные пороки сердца в Азербайджане. Особенности сомати-ческого и социального анамнезов матерей. Акушерство и гинекология. 2012;5:79-82.
Гаджиева, Н.А. Наследственные синдромы, ассоциированные с врожденными порока-ми сердца, в Азербайджане. Российский вестник перинатологии и педиатрии. 2018;1:78-80. DOI: 10.21508/1027–4065–2018–63–1–78–80 7. Сеидбекова Ф.О. Врожденные пороки развития мочеполовой системы у новорож-денных в Баку. Российский вестник перинатологии и педиатрии. 2014;59(2):78-79.
Tang X., Hobbs C.A., Cleves M.A., Erickson S.W., MacLeod S.L., Malik S. National Birth Defects Prevention Study. Genetic variation affects congenital heart defect susceptibility in offspring exposed to maternal tobacco use. Birth Defects Res. A Clin. Mol. Teratol. 2015;103:834–842.
Hafez S.K., DorghamL.Sh., Suheir A.M. Profile of High Risk Pregnancy among Saudi Women in Taif-KSA. World. J MedSci. 2014;11:90–7. DOI: 10.5829/idosi.wjms.2014.11.1.83319
Sunitha T., Prasoona K.R., Kumari T.M., Srinadh B., Deepika M.L.N., Aruna R., Jyothy A. Risk factors for congenital anomalies in high risk pregnant women: A large study from South India. Egypt. J Med. Hum Genet. 2017. 18(10;79-85. DOI: 10.1016/j.ejmhg.2016.04.001
Вафин А.Ю., Игнашина Е.Г. Ранняя диагностика врожденной патологии как значимый резерв снижения заболеваемости и смертности населения (опыт Республики Татарстан). Вестник современной клинической медицины. 2016; 9 (2): 104-109. DOI: 10.20969/VSKM. 2016. 9(2).104-109
Бегимбекова Л.М., Алиева Э.Н., Сулейменова Ж.У., Тастанбекова Ш.А., Байкубекова А. У. Оптимизация пренатальной диагностики врожденных пороков развития плода и вопросы прогно-зирования. Вестник Казахского Национального медицинского университета. 2015; 2:6-8. 13. Lawn J.E., Blencowe H., Waiswa P., Amouzou A., Mathers C., Hogan D. et al. Stillbirths: rates, risk factors, and acceleration towards 2030. Lancet.2016;387:587-603 DOI: 10.1016 / S0140-6736 (15) 00837-5.
Moussa A.A.A., Ibraheem F.A-S.M., Zalat T.M. Placenta Previa and Risk of Congenital Malformations among Singleton Births. AIMJ. 2020;1(1): 183-178. DOI: 10.21608/AIMJ. 2020. 22284.1066
Cooper JN, Wei L, Fernandez SA, Minneci PC, Deans KJ. Pre-operative prediction of surgical morbidity in children: comparison of five statistical models. ComputersinBiologyandMedicine. 2015; 57:54–65. doi: 10.1016/j.compbiomed.2014.11.009
Luo Y., Li Z., Guo H., Cao H., Song C., Guo X., Zhang Y. Predicting congenital heart defects: A comparison of three data mining methods // PLoS One. 2017; 12(5): e0177811. DOI: 10.1371 / journal.pone.0177811
Liang Y., Li X., Hu X., Wen B., Wang L., Wang C. A predictive model of offspring congenital heart disease based on maternal risk factors during pregnancy: a hospital based case-control study in Nanchong City. Int J Med Sci. 2020; 17(18):3091-3097. DOI:10.7150/ijms.48046