e-ISSN: 2664-1194     print ISSN: 2304-6554
Effects of nutrition on brain development
Azerbaijan Journal of Perinatology and Pediatrics

Abstract

A review of the literature discusses current ideas about the positive effects of centain nutrients on the development of a child s intelligence and his behavior formation. It emphasizes that the standard of nutrition for infants is breastfeeding and breast milk, which provides children with everything necessary for his growth and development, including cognitive functions. Breast milk also affects the composition of the intestinal microbiota, therefor affecting the central nervous system development. The article discusses the role of microbiota-gut-brain axis functioning, the effect of intestinal microbiota, probiotics, nucleotides, long-chain polyunsaturated fatty acids, lutein on the brain and the visual analyzer.

References

Margaret McCarthy, Nugent B. Epigenetik influences on the developing brain: effects of hormones and nutrition. Advances in Genomics and Genetics. 2015; 5: 215-225. 2. Dobbing J, Sands J. Quantitative growth and development of human brain. Arch. Dis. Childh. 1973; 48: 757–767.

Horwoord LJ. Breast milk feeding and cognitive ability at 7-8 years. Archives of Disease in Childhood-Fetal and Neonatal Edition. 2001; 84(1): 23F-27.

Rhee SH, Pothoularis C, Mayer EA. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat.Rev.Gastroenterol.Hepatol.2009; 6(5): 306-314.

Cryan JF, Oriordan KJ, Cowan CSM et al.The Microbiota –Gut –Brain Axis.Physiological Reviws. 2018; 99 (4): 1877-2013.

Stilling R, Dinan T, Cryan J. Microbial genes, brain&behavior – epigenetic regulation of the gut-brain axis. Genes, Brain and Behav. 2013; 13: 69–86.

Carabotti M, Scitocco, Maselli M, Severi C. The gutbrain axis: interaction between enteric microbiota, central and enteric nervous system. Annals of Gastroenterol. 2015; 28: 203–209. PMC4367209.

Gareau MG, Wine E, Rodrigues DM, Cho JH, Whary MT, Philpott DJ, Sherman PM. Bacterial infection causes stress-induced memory dysfunction in mice. Gut. 2010; 60 (3): 307–317. doi: 10.1136/gut.2009.202515.

Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J, Collins SM. The Intestinal Microbiota Affect Central Levels of Brain-Derived Neurotropic Factor and Behavior in Mice. Gastroenterology, 2011; 141 (2): 599–609.e3. doi: 10.1053/j. gastro.2011.04.052.

Carlson AL, Xia K, Azcarate –Peril MA, Goldman BD, Ahn M, Styner MA, Knicrmeyer RC. Infant Gut Microbiome Associated With Congnitive Development. Biological Psychiatry.2018; 83(2): 148-159.

Chistian LM, Galley JD, Hade EM, Schoppe-Sullivan S, Kamp Dush C, Bailey MT. Gut microbiome composition is associated with temperament during early childhood. Brain, Behavior, and Immunity, 2015; 45: 118-127.

Mulle JG, Sharp WG, Cubells JF. The gut microbiome: a new frontier in autism research. Curr. Psychiatry Rep. 2013; 15 (2): 337.

Kang DW, Park JG, Ilhan ZE, Wallstrom G, LaBaer J. Adams JB, Krajmalnik-Brown R, Reduced Incidence of Prevotella and Other Fermenters in Intestinal Microflora of Autistic Children. PloS ONE.2013; 8 (7).

Rice D, Barone SJr. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ. Health Perspect. 2000; 108 (Suppl. 3): 511–533. doi: 10.1289/ehp.00108s3511.

Kumar P. Oral microbiota and systemic disease. Molecular Biology, Ginetics and Biotechnology, 2013; 24: 90-93.

Uauy R, Stringel S, Thomas R, Quan J. Effect of dietary nucleosides on growth and maturation of the developing gut in rat. J. Pediatr. Gastroenterol. Nutr. 1990; 10: 497–503.

Яцык Г.В., Студеникин В.М., Скворцова В.А. Вскармливание новорожденных. В кн.: Руководство по неонатологии. М.: МИА, 1998: 205–214.

Leach JL, Baxter JH, Molitor BE, Ramstack MB, Masor ML. Total potentially available nucleosides of human milk by stage of lactation. The American Journal of Clinical Nutrition. 1995; 61 (6): 1224–1230. doi: 10.1093/ajcn/61.6.1224.

Руководство по детскому питанию. В.А. Тутельян, И.Я. Конь, ред. М.: МИА, 2004: 662.

Thorell L, Sjoberg LB, Hernell O. Nucleotides in human milk: sources and metabolism by the newborn infant. Pediatric Res. 1996; 40: 845–852.

Gil A, Corval E, Martinez A, Molina JA. Effets of dietary nucleotiden on the microbial pattern of feces of at term newborn infants. J. Clin. Nutr. Gastroenteol. 1986; 1: 34– .

Ahmad A, Murthy M, Greiner RS, Moriguchi T, Salem N. A Decrease in Cell Size Accompanies a Loss of Docosahexaenoate in the Rat Hippocampus. Nutritional Neuroscience. 2002; 5 (2): 103–113. doi: 10.1080/10284150290018973.

Lien EL, Hammond BR. Nutritional influences on visual development and function. Prog. Retin. Eye Res. 2011; 30 (3): 188–203.

Colombo J, Kannass KN, Jill Shaddy D, Kundurthi S, Maikranz JM, Anderson CJ, Carlson SE. Maternal DHA and the Development of Attention in Infancy and Toddlerhood. Child Development. 2004; 75 (4): 1254–1267. doi: 10.1111/j.1467- 8624.2004.00737.x.

Gaillard ER, Merriam J, Zheng L, Dillon J. Transmission of light to the young primate retina: possible implications for the formation of lipofuscin. Photochem. Photobiol. 2011; 87 (1): 198-21.

Chucair AJ, Rotstein NP, San Giovanni JP, During A, Chew EY, Politi LE, Lutein and zeaxathin protect photoreceptors from apoptosis induced by oksidative stress: relation with docosahexaenoic acid. Invest Ophtalmol.Vis.Sci.2007; 48 (11): 5168-5177.

Alves-Rodrigues, Alexandra, Andrew Shao. The science behind lutein. Toxicology Letters. 2004; 150 (1): 57–83.

Chucair AJ, Rotstein NP, SanGiovanni JP, During A, Chew EY, Politi LE. Lutein and zeaxanthin protect photoreceptors from apoptosis induced by oxidative stress: relation with docosahexaenoic acid. Invest. Ophthalmol. Vis. Sci. 2007; 48 (11): 5168–5177

PDF (Azərbaycanca)
PDF (Azərbaycanca)

Keywords

cognitive development
breast milk
intestinal microbiota
probiotics
long chain polyunsaturated fatty acids
lutein koqnitiv inkişaf
ana südü
bağırsaq mikrobiotası
probiotiklər
uzunzəncirli polidoy-mamış yağ turşuları
lütein когнитивное развитие
грудное молоко
кишечная микробиота
пробиотики
длинноцепочные полиненасыщенные жирные кислоты
лютеин